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Generalised Holstein-Primakoff theory for anharmonic 
lattices 

Lawrence R Mead and N Papanicolaou 
Department of Physics, Washington University, St Louis, Missouri 631 30, USA 

Received 22 April 1983 

Abstract. The spectrum of elementary excitations for scalar field theories on a lattice is 
calculated in the large-N approximation and is found to consist of two distinct branches, 
one of which may be interpreted as a collective mode. The method of calculation is based 
on a generalised Holstein-Primakoff theory for the real symplectic algebra. 

1. Introduction 

A unified approach to essentially all known semiclassical methods in quantum physics 
may be achieved through suitable generalisations of the Holstein-Primakoff ( HP) theory 
which was originally developed in the context of ferromagnetism (Holstein and 
Primakoff 1940). While the HP approach is closely related to the theory of generalised 
coherent states and time-dependent Hartree-Fock approximations, it is more system- 
atic in that higher-order calculations may be carried out without ordering ambiguities. 
Hence, aside from traditional calculations in magnetism and recent applications to the 
1 / N  expansion in quantum mechanics and field theory (Mlodinow and Papanicolaou 
1980, 1981, Papanicolaou 1981a, b), the HP theory was frequently used for the study 
of collective motion in nuclei (Marshalek 1980). The Bogoliubov theory of the Bose 
gas and random-phase approximations for Fermi systems may also be understood 
through suitable extensions of the HP theory (Mead and Papanicolaou 1983). In short, 
the generalised HP theory provides a rigorous alternative to collective-field and hydro- 
dynamical approaches to  many-body theory. 

Although detailed explicit calculations have already been carried out in isolated 
cases, a good portion of the current technology is concerned with the group-theoretical 
foundations of the generalised HP theory (Deenen and Ouesne 1981, 1982). On the 
other hand, it is obviously important to develop efficient calculational methods, 
especially for systems with a large (possibly infinite) number of degrees of freedom. 
This paper presents an explicit calculation of the spectrum of elementary excitations 
for a lattice field theory defined from the Hamiltonian 

r 1 

where n denotes a site on a Ddimensional cubic lattice and the sum over the unit vectors 
collectively denoted by e extends over neighbouring sites. The repeated index j is 
summed over j = 1,2 ,  . . . , N, so the theory is symmetric under O ( N )  rotations. rr', is 
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the canonical momentum associated with and V = V ( x )  is some single-site anhar- 
monic potential. 

The continuum limit of theories such as (1. I )  was analysed in the large-N approxi- 
mation by several authors (Dolan and Jackiw 1974, Schnitzer 1974, Coleman et a1 
1974, Abbott et a1 1976, Halpern 1980). The emerging picture is troublesome because 
of the appearance of tachyonic poles in singlet correlation functions. the analogues of 
the Landau ghosts familiar from quantum electrodynamics. In fact, Gross and Neveu 
(1974) argued at length about the peculiarities arising in the continuum limit of 
non-asymptotically-free theories. However, instead of pathological Landau ghosts, we 
find that the lattice model (1.1) possesses a well defined spectrum of elementary 
excitations consisting of two distinct branches, one of which may be interpreted as a 
collective mode. 

In the absence of the single-site potential in ( l . l ) ,  the spectrum consists of the 
usual acoustic phonons. The first obvious consequence of the potential is that the 
phonons acquire a non-vanishing mass gap. A closer examination suggests that a 
second branch should arise in the spectrum, describing collective motion in the anhar- 
monic potential. Notice, for instance, that in the extreme limit of strong anharmonicity 
the various degrees of freedom oscillate independently of each other in a common 
potential well. For moderate anharmonicity, a compromise is reached manifested by 
a twofold spectrum of excitations. The main burden of this paper is to exhibit that 
spectrum quantitatively. As it turns out, the general shape of the collective branch is 
fairly similar to the familiar optical modes. Nevertheless, the physical origin and 
characteristics of the collective mode are distinctly different, for it may occur in pure 
lattices (without a basis) and is a singlet under global O ( N )  rotations. It should also 
be mentioned that the collective mode can coexist with optical modes, and that 
translation-invariant anharmonic terms may be included in (1.1) with no apparent 
qualitative consequences for the current discussion. Our aim is to exhibit the collective 
mode in the simplest possible situation. 

The method of calculation adopted here is a Hamiltonian formulation of the 1/N 
expansion based on a generalised HP theory which is most suitable for the study of 
elementary excitations. Since the main algebraic results have already appeared in the 
literature, 5 2 presents a brief survey of the relevant results. Section 3 is then devoted 
to the explicit calculation of the spectrum, exhibiting the two branches mentioned 
earlier, for typical choices of the potential. 

2. Holstein-Primakoff theory 

The algebraic aspects of the calculation are essentially independent of the effective 
dimensionality of the lattice D. For the sake of clarity, therefore, we first explain the 
procedure for the anharmonic chain ( D  = 1). The necessary generalisations to higher- 
dimensional lattices will be exhibited at the end of the calculation. A convenient set 
of operators is then introduced through the Fourier decomposition 
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where A is the total number of sites in the periodic chain and is assumed odd for 
notational convenience. The frequencies Rp are at this point arbitrary except for the 
symmetry relation R, = R-, which may be imposed without loss of generality. 

The Hamiltonian may now be written in the form 

1 
(U:  + R:)App +-(U: - RE)( Bp,-p + B:,-,)) 

2RP 

which emphasises the dependence on the set of rotationally invariant bilocal operators 

A, = ;(urui, + 9 P ’  a i * )  B w = L  z a p %  i i B& = i ~ r a $ .  (2.3) 
The above set of pseudospin operators is known to close the algebra of the real 
symplectic group Sp(2A, R). We shall often use matrix notation defined from A = 
(A,),B = (B,) and B* = ( B L ) .  A is then a A X  A Hermitian matrix whereas B and 
B* are symmetric (Bt = B*). 

In searching for eigenvalues of the Hamiltonian H = H ( A ,  B, B*) defined from 
(2.2), it would be convenient first to disentangle the angular degrees of freedom as is 
normally done in few-body quantum mechanics. A similar task for (2.2) appears 
difficult because of the large number of degrees of freedom involved, and because it 
would be preferable to carry out the angular-momentum decomposition in the Heisen- 
berg representation. Nevertheless, a concise answer to the above question is possible, 
noting that states in the Fock space with definite angular momentum but varying 
‘radial’ quantum numbers may be placed within infinite-dimensional representations 
of the pseudospin algebra (2.3), sometimes called sectors. Our task is then to find 
suitable restrictions of the pseudospin algebra to each sector. This is accomplished by 
generalised HP representations. 

A HP representation of the operators (2.3) suitable for the description of the singlet 
(or vacuum) sector is given by 

(2.4) 
where I is the A X A unit matrix and 5 = (f,) is a A X A symmetric matrix ( t, = tq,) 
whose entries are Bose operators: 

B* = 5*[iNI + (5*5)T]1/2, T 1/2 A =$NI + t*t, B=[iN1+(5*5) 1 5, 

[ t p q  ‘$21 = i ( a p k a q l +  a p l a q k ) *  (2.5) 
The symbol T in (2.4) stands for the usual transposition of matrices: 

Notice, however, that ( t*f)T # &* because the entries of 6 and 5* are non-commuting 
operators. Using (2.5) the correct identity is found to be 

tf*=(f*[)T+i(A+l)I, (2.7) 
which shows that in the special cases A =  1 and A=2,  equations (2.4) reduce to the 
HP representations employed by Mlodinow and Papanicolaou (1980, 1981) for the 
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discussion of one- and two-body Hamiltonians. Although the two forms are equivalent, 
equations (2.4) will be more convenient for the current calculation because A will 
eventually be taken to infinity. Enforcing the definition (2.6), the parameter A will 
never appear explicitly except as an overall factor in suitable Fourier transforms. 

More detailed explanations and concise proofs of the preceding statements may 
be inferred from recent publications (Papanicolaou 1981b, Deenen and Quesne 1982), 
so our current effort will be directed toward explicit applications. Hence, an exact 
restriction of the Hamiltonian (2.2) to the vacuum sector may be obtained by the 
direct substitution A +  A([, [*), etc, from equations (2.4), resulting in a Hamiltonian 
H = H ( [ ,  [*). The diagonalisation of H([, [*) in the Fock space associated with (2.5) 
would yield the singlet spectrum of the original Hamiltonian. Is it then sufficient to 
consider only the restriction to the vacuum sector implied by (2.4)? As it turns out, 
the spectrum of H([, [*) consists of genuinely singlet states (the collective mode), 
together with a two-body continuum of uncoupled angular-momentum-one states in 
suitable kinematical superpositions to form singlet states. Therefore, at least as far as 
elementary excitations are concerned, there is no apparent loss of generality. It should 
be mentioned, however, that direct HP restrictions to non-singlet sectors may also 
prove useful. 

In practice, the representation (2.4) must be supplemented by some approximation 
procedure. We thus turn our attention to the explicit calculation of the spectrum of 
(2.2) in the large-N approximation, for which the HP theory is well adapted. If the 
potential V were treated as a small perturbation to the harmonic Hamiltonian, the 
undetermined frequencies R, would be chosen equal to the phonon frequencies w, 
rendering the quadratic terms in (2.2) diagonal. We shall instead determine R, from 
a variational argument so that [ = 0 = t* becomes a stationary point of the Hamiltonian 
H = H ( [ ,  [*). The argument consists of three elementary steps. First, we set [ = 0 = [* 
in (2.4) to obtain A, = (N/4)S, and B, = 0 = B&, which are then inserted in (2.2) 
to yield 

Second, we minimise E = E(R,) with respect to the unknown frequencies R,: 

~ I E / ~ R ,  = O ~ R ,  = [ U ;  + v ’ ( u ~ ) ] ’ / ~  = [ 4 ~ ~  sin2( p/2) + V ’ ( U ’ ) ] ~ / ~ ,  (2.9) 
where V ’ ( x )  is the derivative of the function V =  V ( x ) .  Recalling the definition of 
a2 from (2.8), we find that R, is completely determined from (2.9) if u2 satisfies the 
algebraic gap equation 

K~ sin’(p/2) + v ’ ( u ~ ) ] - ’ / ~ .  (2.10) c7 ---c--=--c[4 
2 -  N 1 N  

211, R, 2 A p  

The value of the function E = E(R,) evaluated at frequencies determined from 
(2.9)-(2.10) is the large-N approximation to the ground-state energy which we denote 

The third and final step is to show that the point [ = 0 = [* is a stationary point of 
the Hamiltonian if R, is determined from equations (2.9)-(2.10). This may be done 
by a direct Taylor expansion of H = H([, [*). To within harmonic terms, the HP 
representation (2.4) may be approximated by 

by Eo. 

(2.11) 1/2 * A, = m, + c 5 ; k z k q ,  B, = w/2)1/26,, B & = ( N / 2 )  5,. 
k 
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Insertion of (2.1 1) in (2.2) and further Taylor expansion produces the quadratic 
Hamiltonian: 

H=E,,+H,,+. . . , 
1 

Ho = 1 2np5& tqp + $NV”( d 2 - 1 (fl,,R, ) - ’  “ { E m  exp[i( p + 4 n I 
(2 .12)  

w n L W  
2 

+ t h  exp[-i(p+q)n~}) . 

Equations (2.9)-(2.10) were systematically enforced in obtaining (2.12).  E,, is the 
large-N approximation to the ground-state energy discussed earlier, H hereas Ho 
contains information about the normal modes of the system. Notice that linear terms 
do  not appear in (2.12) which establishes that t=  O =  t* is indeed a staticvary point. 
Whether the stationary point is a local minimum or not depends, of course, on the 
choice of the potential. 

The general strategy should now be clear. The intended approximation procedure 
has been reduced to standard Rayleigh-Schrodinger perturbation theory in which Ho 
plays the role of the fundamental approximation, and higher-order corrections are 
identified from a systematic 1 /N expansion of (2.2) and (2.4). Our immediate concern 
will then be the diagonalisation of the quadratic Hamiltonian H,, a task taken up in 
8 3 for typical choices of the potential. 

3. Collective modes 

In order to understand the kinematics associated with the quadratic Hamiltonian (2.12) 
we first examine the simple case of a harmonic potential 

V(&,dLI = m2(41n4L), (3.1) 
so that V ( x )  = m2x, V ’ ( x )  = m’, V ” ( x )  = O  and 

Ho = c 2n,5: t q p .  n , = [ 4 ~ ~ s i n ’ ( p / 2 ) + m ’ ] ’  ’. (3.2) 
PI 

The gap equation (2.10) is trivialised and merely yields the vacuum-expectation value 

(3.3) 

The ground-state energy is then obtained setting V ( a 2 )  = m’d in (2.8) and replacing 
U’ from (3.3) to yield the expected result 

Eo = tiv np. 
P 

(3.4) 

The first excited state of Ho is then given by 

lw) = gq IO), H”lPq) = (a, +n,)lw) = E,/w), (3.5) 

where we used the commutation relations (2.5). The spectrum consists of elementary 
excitations with mass gap m, to be referred to as quasiphonons. The eigenvalue in 
(3.5) is the sum of two quasiphonon frequencies because the current formulation 
addresses singlet states under global O( N )  rotations. 
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In view of the symmetry relation EM = EqP there are A ( A +  1) /2  distinct normal 
modes, where A = 2K + 1 is the total number of lattice sites. A useful labelling of the 
corresponding eigenstates is achieved by introdxing the total crystal momentum, 
instead of the linear momentum p + q  which takes values in a double Brillouin zone. 
The crystal momentum denoted by s is defined from s = p + q  if -K s p +  q s K,  
s = p i - q - A  if K < p + q ~ 2 K , a n d  s = p + q + A i f  -2KGp+q<-K.  (For notational 
convenience, momenta are hereafter measured in units of 27r/A.) The crystal momen- 
tum s takes values in the fundamental zone. For each s there are K + l  states with 
distinct energy eigenvalues EIry = 0, + 0,. Figure 1( a )  displays the quasiphonon 
energies E, = I!, + CLq against crystal momentum s for a small lattice (:i\ = 9). Because 
energies corresponding to opposite crystal momentum (*s)  are equal, only half of the 
Brillouin zone is depicted. 

r7 I 

Momentum 

Figure 1. Normal frequencies for a small I D  lattice (.I = 9. K = 1, m = 3) plotted against 
the crystal momentum s (in units of Zn/..\) defined in the text. ( a )  Results for the harmonic 
potential. ( b )  Corresponding results for  the anharmonic potential. 

The preceding picture may be described in a more formal manner by introducing 
the translation operator 

i3.6) 

The states Iw) are then eigenstates of Q: 

Q l w )  =exp(is) lwj  (3.7) 

where s takes values as described in the previous paragraph. 
To be sure, this kinematical discussion is nearly academic as far as the harmonic 

potential (3.1) is concerned. Its merits become apparent in the study of anharmonic 
potentials which we consider next. Hence we study a typical example defined from 

V(4L4i) =tg2(4L4L)2, (3.8) 

where g2 is some positive coupling constant. The function V ( x )  and its derivatives 
occurring in equations (2.8)-(2.12) are then given by V ( x )  =$g2x2, V ’ ( x )  = g2x and 
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V ” =  g 2 ,  and the gap equation (2.10) yields 

(3.9 i 

where we have used the convenient mass Forameter mz = g 2 d .  It is not difficult to 
establish that (3.9) possesses a unique so!ution m’ for all g 2 .  In practice, equation 
(3.9) is used to express g’ as a function of m’, thus achieving a very convenient 
parametrisation. 

We now turn our attention to the essen:ial point of the calcuiation, thi: diagonalisa- 
tion of the quadratic Hamiltonian (2.12). Setting V”= g 2  and perl’o;mi~ip the summa- 
tion over n, one finds that 

where g 2 = l N g ’  may be expressed in terms of the physical mass m‘ from (?.!I), and 

(3.11) 

It is important to note that A is not merely the Kronecker delta because of potential 
umkiapp contributions, unless at least two of the momenta involved vanish. In general, 
A is equal to one if p + q  + k + 1 = 0, or *27r, and vanishes otherwise. No further 
umklapp contributions arise, however, because p .  q, k and 1 all take values in the 
fundamental Rrillouin zone. 

It will be instructive to consider also the Heisenberg equation of motion deriving 
from the Hamiltonian (3.10) and the commutation relations ( 2 . 5 ) :  

13.12) 

This already provides an important hint concerning the method of diagonalisation. 
Consider for instance the subset of operators tw and 6% such that p +  g = 0. A theri 
becomes the usual Kronecker delta, establishing that the above subset of operators 
decouples from the rest. It is reasonable to expect that there may be a method for 
disentangling the various operators in (3.10) or (3.12) according to their total crystal 
momentum s, including p + q = 0 as a special case. 

In order to systematise the preceding remarks, we introduce the more or less 
obvious identity 

K 
1 = S(  p +  q )  + 1 ( 6 (  p + q - s) + 6 (  p +  q + s) + 6 (  p +  q - s +-I) + S( p + q + s - A)) ,  

S = l  

(3.13) 

which is valid if p and q takes values in the zone defined from equation (2.1). a(;) 
is the Kronecker delta defined from 6(x  = 0) = 1 and 6(x  f 0) = 0. Notice that the 
dummy index s takes only positive values so that terms with opposite crystal momentum 
are separately displayed. The above identity is inserted in (3.10), once in the first 
term and twice in the second, to disentangle the Hamiltonian into a sum of commuting 
operators each parametrised by the index s: 

(3.14) 
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where 

(3.15) 
p = - K  

PT q = 5 - ,\ 
(3.16) 

p i  q = s-.2 

The sums in (3.16) extend over all values of p and q in the Brillouin zone which are 
compatible with p + q = s or p + q = s - ‘1, for fixed s in the range 1 s s s K. 

It is then sufficient to diagonalise each term in (3.14) separately, the corresponding 
eigenvalues being parametrised by s. To proceed with the diagonalisation we should 
first eliminate a minor redundancy occurring in (3 .14H3.16)  because of the symmetry 
tN = tqp. For instance, the operator .&-p with p # 0 occurs twice in (3.15), while 500 

occurs only once. Define CO = 500,  and Cp = d 2 [ p . - p  = 4 2  5- p , p  for p # 0, so the commu- 
tation relations ( 2 . 5 )  reduce to Bose commutators with standard normalisation: 
[C, C t  ] = 6,. Restriction of the sum in (3.15) to therange [0, K ]  and suitable 
adjustment of the coefficients yields 

(3.17) 

There are K + 1  normal frequencies associated with (3.17), which we denote by SZ, 
and are the roots of the algebraic equation 

(3.18) 

To obtain the generalisation of (3.18) to arbitrary crystal momentum s we must 
diagonalise the Hamiltonian (3.16). The calculation is slightly more complicated 
because of the umklapp terms present in (3.16). We state the final result which is a 
more or less obvious generalisation of (3.18). Thus, for even values of s, the eigenvalue 
equation reads 

with 

for p = 0, 

whereas for s odd the corresponding equations are 

2 =  1, f; 
- ( ~ p + ( s + l ) / 2 + R p - ( s - 1 ) , 2 )  p = o  SZ2 5 

(3.19) 

(3.20) 

(3.21) 
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(3.22) 

The eigenvalue equations (3.18), (3.19) and (3.21) were solved numerically for 
various values of A = 2K + 1, noting that the roots of an algebraic equation of the form 

1 f;/(n2- w ; ,  = 1 
P 

are the eigenvalues of the (K + 1) x ( K  + 1) matrix 

M = (w;S,+fpfq)+det[(wi -i22)S,+fpfq]=0. 

The lattice constant K was taken equal to unity in all calculations. The only free 
parameter is then the physical mass m, because N and g' enter only through the 
combination g2 = N g 2 / 2  which may be eiiminated in favour of m by virtue of the gap 
equation (3.9). Figure l ( b )  shows the results for a small lattice ( A  = 9) which should 
be compared with the corresponding results in figure l ( a )  concerning the harmonic 
potential. In both cases the eigenvalues are plotted against the crystal momentum s, 
and the quasiphonon mass is taken equal to m = 3. While the total number of normal 
modes in figure l ( b )  is exactly equal to the modes in figure l ( a ) ,  the formation of a 
collective branch separated from the two-body quasiphonon continuum is evident. We 
have repeated the calculation for a variety of values for A.  up to A = 29. As it turned 
out, the mass gap of the collective branch (at s = 0) had stabilised to within five figures 
already at A = 9. The results for A = 29 are given in figure 2. The collective mode is 
drawn as a continuous curve whereas the shaded area corresponds to the two-body 
continuum. The shape of the collective branch is very similar to the more familiar 
optical modes. As was noted in the introduction, however, the physical origin of the 
collective mode is substantially different. 

r-- 

Momentum 

Figure 2. Normal frequencies for a large 1D lattice 
( A  = 29, K = 1, m = 3) .  The collective mode is drawn 
as a continuous curve, whereas the shaded area cor- 
responds to the two-body continuum. 

m 

Figure 3. Mass gap of the collective mode against 
quasiphonon mass, for D = 1 and D = 3 ( K = 1, A + 

E). Both curves a s  asymptotic to the strong-coup- 
ling limit M - m J 6  which is independent of lattice 
dimension. 
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We further repeated the calculation for various values of m, which is equivalent 
to varying the coupling constant g'. Large m corresponds to  strong coupling g2 while 
small m corresponds to weak coupling (see equation (3.9)). The picture is 2s follows. 
For small m, the collective branch falls into the two-body continuum. as expected in 
the limit of vanishing anharrnonicity. Fer  large m, the collective branch tends to a 
horizontal straight line at a distance mJ6 ,  and the two-body continuum also shrinks 
to  a straight horizontal line at a distance 2m. This provides an important check of 
consistency and sheds light on the nature of the collective excitation. In effect, the 
above limit corresponds to setting the lattice constant K equal to zero. The system 
then reduces to A non-interacting particles each in the anharmonic potential (3.8).  
Notice that the gap equation (3.9) yields 

m - (,Yg2/2)1'3 ( ' 3 . 2 3  

in the strong-coupling limit. Furthermore, the large-N approximatioc to the spectrum 
in an anharmonic potential may be extracted from the work of Mlodinow and 
Papanicolaou (1980). Adjusting the conventions, one finds that 

E = [ g 2 ( 1 + ; . ~ ) 1 1 / 3 g ( 1  +;N) + ( n v " 6 + ~ 3 -  1) + .  . .I (3.24) 

where successive terms are organised in inverse powers of ( l + $ N ) ,  1 is the angular 
momentum, and n is the radial quantum number. Re-expanding (3.21 in inverse powers 
of N yields 

(3.25) E = m [;,v t- I + nti, t - 1 ) + O( fi-- 1 )I, 

where m is given by (3.23). 
Therefore, the normal frequency for singlet oscillations is found to  be equal t o  

md'6 which is the coefficient of the radial quantum number n in equation (3.251. This 
is exactly equal to the limiting value of the collective mode discussed earlier. Further- 
more. equation (3.25) implies that the frequency for angular excitations is equal t o  m 
u.hich is the coefficient of the angular momentum 1. The frequency for a two-body 
sirigkt state is then equal t o  2m which again agrees with the limiting values for the 
two-body quasiphonon continuum found earlier. Aside from providing a check of 
consistency, the preceding remarks clarify the reason for the appearance of a singlet 
collective excitation in the full problem. 

Our final task is to extend the calculation to  a three-dimensional lattice ( D  = 31, 
restricting ourselves to the calculation of the mass gap of the collective branch at 
.anishing crystal momentum. It is then sufficient t o  generalise (3.18) to  D = 3. First, 
we  write out equation (3.18) in the thermodynamic limit A + c o  at D = 1. Using the 
definition of the potential V, from (3.171, and the gap equation (3.9) to express 
8- = fVg2/2 in terms of the physical mass m 2 ,  one obtains 

(3.26) 

which should be viewed as an algebraic equation for the frequency 52. It possesses 
only one real root, in the region R 2 Z 4 ( 4 ~ 2 +  m 2 ) ,  which is equal t o  the mass gap of 
the collective branch. The two-body quasiphonon continuum appears t o  have been 
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lost in the thermodynamic limit, but it may be recovered by a suitable iE prescription 
in (3.26). The two-body continuum will not concern us at this point. Instead, we note 
that the generalisation of (3.26) to any lattice dimension D is straightforward. For 
D = 3, the correct generalisation is obtained by the formal substitutions 

d p / 2 r  + d3p/(2r)3,  

R,,+R,, = { 4 ~ ~ [ s i n ~ ( p ~ / 2 ) + s i n ~ ( p ~ / 2 ) + s i n ~ ( p ~ / 2 ) ] +  m2}1’2. 
(3.27) 

The resulting algebraic equation for R is solved numerically for various values of the 
quasiphonon mass m. The real root is denoted by M and provides the mass of the 
collective branch at D = 3. The results are summarised in figure 3 together with the 
corresponcjing results for D = 1 obtained earlier. Note that M reaches the limiting 
value mJ6 in the strong-coupling limit irrespectively of the lattice dimension D. This 
is as expected because for strong coupling (or K = 0) the system reduces to independent 
anharmonic oscillators. In the weak-coupling limit m + 0, M reaches the value ~ K J D  
which is the energy of two uncoupled phonons at the zone boundary. 

We conclude our discussion with a few remarks. The situation analysed here is 
probably too ideal to have applications in real crystals. Notice that we have assumed 
a global O ( N )  symmetry. In real crystals the symmetry is reduced to a discrete 
subgroup of O ( N ) ,  resulting in additional terms in the Hamiltonian. These may alter 
the collective mode quite drastically, and possibly destroy it. From the methodological 
point of view, the generalised HP theory provides a rigorous alternative to collective- 
field or hydrodynamic formulations frequently encountered in many-body theory. Two 
related troublesome questions usually associated with the latter treatments are resolved 
by the HP theory. (i) Ordering ambiguities do not occur in higher-order calculations 
which may be systematically performed. (ii) Implicit in the diagonalisation of the 
Hamiltonian (3.10) is the construction of separate creation-annihilation operators for 
the collective mode and the two-body continuum. Double counting does not occur, 
however, as is best illustrated in figure 1. The total number of independent normal 
frequencies remains equal to A ( A +  1)/2 at all stages of the calculation, even though 
the frequencies are distributed over distinct branches. 

There is little doubt that our results may be rederived using other methods. 
Independently of the method, the important conclusion is that the lattice  field 
theory possesses a spectrum of elementary excitations which is well defined and richer 
than what one would naively expect. We should emphasise, however, that our con- 
clusions do not necessarily contradict the appearance of Landau ghosts in the spectrum 
of the continuum field theory, or in the context of other regularisation schemes. On 
the contrary, the current calculations may be used as a starting point for a careful 
study of the mechanism by which Landau ghosts emerge in the continuum limit. Such 
an exercise would be less than academic in view of the augmenting evidence that 
44couplings, an important ingredient in the Goldstone-Higgs mechanism, lead to 
either trivial or pathological continuum field theories outside weak-coupling perturba- 
tion theory. 
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